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Abstract

Effective operator contributions to W-boson scattering at the LHC

by

Alden D. Deran

In this thesis I examine whether current detector technology is capable of ruling out contributions

to the W-boson scattering invariant mass spectrum by ”effective operators” added to the Standard

Model Lagrangian. Using Monte-Carlo generated events at 14 TeV, I use the Delphes detector

simulation framework to introduce uncertainty in the observed lepton and jet transverse momenta

and energy. Then I attempt to reconstruct the invariant mass spectrum of the W-boson pair, and

compare the spectrum with and without effective operators using a Profile Likelihood statistical

test.
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1 Introduction

1.1 The Standard Model

The Standard Model (SM) of particle physics is the currently accepted theory of elementary

particle interactions. [16] The Standard Model defines a set of particles and their corresponding anti-

particles, all of which have no substructure or internal state, and are therefore called elementary

particles. All of the Standard Model particles have been observed in nature; the last to be observed

was the Higgs Boson in 2012. [17] The elementary particles are divided into spin-1/2 fermions and

spin-1 bosons. The fermions are further divided into leptons (electrons, muons, and taus), neutrinos

(electron neutrino, muon neutrino, and tau neutrino), and quarks (up, down, top, bottom, charm,

and strange). The bosons are the mediators of interactions between the fermions: photons mediate

the electromagnetic interaction, the gluons mediate the strong interactions between quarks, and the

W± and Z bosons mediate the weak interaction.

The quarks never exist by themselves in nature - they are always bound together to form

hadrons. The proton is a hadron composed of two up quarks and one down quark, and the neutron

is two down quarks and one up. If a quark breaks free from a hadron, it will quickly decay into a

shower of other particles called a jet.
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Figure 1.1: The particles of the standard model.
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1.2 Symmetries

In order to describe the interactions of elementary particles at high energies, one must

introduce a quantum theory that is invariant under Lorentz transformations. These theories are

typically described in terms of fields ϕ(x0, x1, x2, x3) and by specifying the Lagrangian Density

L(ϕ, ∂ϕ
∂x ,

∂ϕ
∂t ). [18] The Lagrangian density obeys the Euler-Lagrange equations:

∂

∂Xµ
(

∂L
∂(∂ϕ/∂Xµ)

)− ∂L
∂ϕ

= 0 (1.1)

In the Standard Model, particles are represented by either vector or scalar fields, depending on

their spins. The electron is represented by a field with two complex components at each point

in space, while the spin-zero Higgs boson is represented by a scalar field. The scalar and vector

fields in the Standard Model can often be transformed in such a way that the Lagrangian remains

constant. These symmetries in the Standard Model can be expressed using the concept of a group.

The electromagnetic fields have symmetry according to the U(1) group, which is just the set of

complex numbers with magnitude one, which can be expressed as eiθ, where θ takes any real value.

Any two elements of U(1) multiplied together will give another element of U(1). For a scalar field,

U(1) symmetry means that:

ϕ = eiθϕ (1.2)

for any θ. When spin and color charge are taken into account, the overall symmetry of the Standard

Model can be written as SU(3)×SU(2)×U(1), where SU(N) is the Special Unitary group, consisting

of N ×N unitary matrices with determinant one.

Substituting the Lagrangian for a system into the Euler-Lagrange equations gives the equa-

tions of motion of the system, from which the values of the fields at each point in space can be solved

for.
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1.3 The Large Hadron Collider

In order to study the fundamental particles and their interactions, particle accelerators

are typically used to accelerate particles to relativist energies and collide them, with detectors to

observe the results of the collision. Since the particles are accelerated at energies close to the rest

energies of particles such as the W and Z bosons, it is possible for these particles to be created

during the collisions. The two main types of accelerators are linear and circular. Linear accelerators

typically collide electrons and positrons together, while circular accelerators often use protons and

anti-protons. This is due to Bremsstrahlung radiation - photons that are emitted from accelerating

charged particles. This radiation decreases according to the fourth power of the mass of the particle,

so protons lose much less of their energy while accelerating around a loop.

The Large Hadron Collider (LHC) is a proton-antiproton collider located in Geneva, Switzer-

land. The LHC accelerates protons to relativistic energies of 7 TeV, giving a total center of mass

energy of 14 TeV.

1.3.1 Coordinate System

Coordinates inside the LHC are typically measured relative to the beam, with the z-axis

pointing along the beamline, the positive y-axis pointing upward, and the positive x-axis pointing

toward the center of the ring. The angle away from the beam axis is designated θ, and the angle

around the beam axis is called ϕ. Rather than using θ directly, one typically uses the pseudorapidity

η, defined as: [19]

η = −ln tan
θ

2
(1.3)

In order to quantify the closeness of two particle tracks, one often uses ∆R, the separation in eta-phi

space:

∆R =
√
(ϕ1 − ϕ2)2 + (η1 − η2)2 (1.4)
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This can often be used to identify corresponding particles in two different data files that represent

the same events.

1.3.2 Luminosity

The Luminosity of a collider is a measurement of how many particles travel through a unit

surface area per time, and is useful for quantifying the statistical power that a collider can provide

when searching for new particles. The total number of events expected after the collider has been

running for some time is called the integrated luminosity and is measured in inverse femtobarns

(fb−1). One can find the number of expected events for a certain process by multiplying the

integrated luminosity by the cross-section of that process. In 2012, the LHC achieved 23fb−1 worth

of events, with luminosity at 1034cm−2s−1.[19]

From 2015 to 2017, the LHC is expected to provide an additional 100fb−1 of events, before

being shut down for the ”phase-I” upgrade, in which the luminosity will be increased to about

2 × 1034cm−2s−1 and the detectors will be upgraded to withstand the increased radiation from

the higher luminosity. [23] The third run of the detector will occur until about 2021, collecting

300fb−1 of data. The final upgrade, phase-II, will happen in 2023, increasing the luminosity to

5 × 1034cm−2s−1. At this luminosity, an average of 140 collisions will happen per bunch-crossing,

which poses significant challenges when trying to determine which vertex a particle came from. [23]

1.4 The ATLAS experiment

ATLAS (A Toroidal LHC Apparatus) is one of the seven experiments located along the

LHC ring. ATLAS is cylindrical, concentric rings of silicon pixel and strip detectors, calorimeters,

and muon tracking chambers. The Inner Detector (ID) contains the first set of pixel and strip

detectors. These are arranged in concentric cylinders around the beam-line, as well as in ”end-caps”

perpendicular to the beam-line. The barrel covers the region |η| < 1.0, and the endcaps cover

1.0 < |η| < 2.5. The inner detector has a 2 Tesla magnetic field along the beam axis, which causes
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Figure 1.2: Diagram of the ATLAS detector.[20]



7

charged particles to curve. By using several layers of detectors, one can reconstruct the trajectory

of the particle based on the point where it crosses each layer. The direction of the curvature of the

particle gives its charge, and the magnitude of the curvature gives its momentum.

Outside the Inner Detector are the calorimeters, which measure the energies of charged

particles and hadrons. Liquid Argon electromagnetic calorimeters are used to measure the energies

of photons and electrons in the region |η| < 3.2.

1.5 Vector Boson Scattering

Vector Boson scattering (VBS) is of particular interest because contributions from beyond-

the-standard model theories would have a direct effect on the observed VBS cross sections at the

LHC. [4] The Higgs mechanism is the currently accepted theory for how WW scattering is unitarized.

Without the Higgs mechanism, the WW scattering cross section does not approach zero at high-

energies, which is necessary to keep the probability distributions normalized. [4]

Previous work has pointed out that the leptonically-decaying channel of opposite-sign W-

boson scattering (called leptonic WW scattering from now on) is a promising VBS interaction to

study because the four-vectors of both W-bosons can be solved for, giving the WW invariant mass

spectrum. [4] Leptonic opposite-sign WW scattering is the following process:

pp̄ > W+W−jj > qq̄l−v̄ljj (1.5)

pp̄ > W+W−jj > qq̄l+vljj (1.6)

where p represents a proton, p̄ represents an anti-proton, W± the W boson, l either an

electron or a muon, and vl the corresponding lepton neutrino. A Feynman diagram of the process

is shown in figure 1.3.

According to [4] leptonic WW scattering events can be identified by the presence of a

lepton with pt > 60GeV , at least 25 GeV of missing transverse energy (representing the pt of the

neutrino), two ”tagging” jets in opposite η-hemispheres (the remnants of the protons), and one jet
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Figure 1.3: Feynman diagram of leptonically-decaying W+W− scattering. The interaction between

the two W bosons could be mediated by the Higgs or by other new physics.

with mass between 60 GeV and 100 GeV (the ”W-jet”). Although, the hadronically-decaying W

actually decays to two jets, these two jets are close in ∆R and are reconstructed as one jet with

mass close to the mass of the W.

According to [4], the main obstacle to using leptonic WW scattering in searches for new

physics is the tt̄ background, which closely mimmicks the same final-state particles. They found

that the W+3Jets and W+4Jets backgrounds were not significant.

1.5.1 Effective Field Theories

Assuming that the energy scale of new beyond-the-standard-model physics interactions is

higher than the energy scale of the Large Hadron Collider, the best way to observe this new physics

is to observe deviations from the Standard Model in interactions between known particles. If higher-

energy interactions are occurring, they could be parameterized by adding terms to the Lagrangian



9

that obey the Standard Model symmetries. These terms can be written as:

Leff = LSM +
∑
d>4

∑
i

c̄i
Λd−4

Oi (1.7)

where Λ is called the ”scale” of the new physics - large Λ means the effects only contribute

at high energies. The ci are free parameters of the model. In this thesis, I will use simulated events

based on these effective Lagrangians in order to come up with an estimate of how effective the

HL-LHC will be when searching for new contributions to WW scattering.
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2 Methods

2.1 Monte-Carlo Event Simulation

Since the Standard Model Lagrangian is extremely complex, computing the cross-sections

of interactions exactly would be very difficult. In order to produce simulated events, one typically

uses Monte Carlo integration. This involves approximating the value of an integral by estimating

the value of the integrand and multiplying by the length of the integration:

I =

∫ x2

x1

f(x)dx ≈ (x2 − x1)
1

N

N∑
i=0

f(xi) (2.1)

where the xi are values between x1 and x2 drawn from a uniform distribution. [21] The variance of

this estimate of the integral decreases as 1√
N
.

The simulated WW scattering events were generated by VBFNLO, which uses Monte Carlo

methods to calculate cross sections and particle trajectories. [14][15] In addition to the Standard

Model, VBFNLO can create simulated semi-leptonic WW scattering events under various effective

operator Lagrangians. The events I use in this analysis have the dimension-6 operators enabled, and

with several values of the scale factor Λ. The backgrounds used in this analysis are generated by

MadGraph, another Monte-Carlo event generator. [24]

The parton-level events were then processed by Pythia 8.205, which hadronizes the parton-

level particles. [25]
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2.2 Reconstructing WW Invariant Mass

Because the LHC accelerates protons to relativistic speeds, the kinematics of particle scat-

tering and decay are governed by conservation of relativistic energy and momentum. Under the

requirement of Lorentz invariance, the kinematics of a particle can be represented by the energy-

momentum four-vector:

pµ = (
E

c
, px, py, pz) (2.2)

where px, py, and pz are the relativistic momenta of the particle and E is its total energy. The length

of the energy-momentum four-vector (and all other Lorentz invariant four-vectors) is conserved under

Lorentz transformations, where the length is defined by the inner product:

pµ · pµ = pµp
µ = −E2

c2
+ p2x + p2y + p2z = −E2 + |p⃗|2 = −m2 (2.3)

where m is the called the invariant mass of the particle, and we have assumed that c = 1 for

convenience. In the last step we have used the relationship between relativistic momentum and

energy:

E2 = p2 +m2 (2.4)

For a particle decay, the four-vectors of the descending particles add to the four-vector of the original

particle:

pmother = pdaughter1 + pdaughter2 + pdaughter3 + ... (2.5)

For scattering, the four-vectors of the incoming particles add to the sum of the four-vectors of the

outgoing particles:

pincoming1 + pincoming2 = poutgoing1 + poutgoing2 (2.6)

These two properties are very useful because they allow us to reconstruct the invariant masses of

intermediate particles in an interaction by measuring the components of the four-vectors of the

daughter particles.

In WW scattering, both W bosons decay without being registered in any particle detec-

tors, but their remnants (leptons and jets) can be detected and their momenta and energy can be
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measured. If the four-vectors of all daughter particles are known, the four-vectors of the W-bosons

can be reconstructed. In scattering experiments, the typical goal is to quantify the particle that

mediates the scattering. Therefore, the invariant mass of the scattered particle pair is often of in-

terest because peaks in the invariant mass spectrum would correspond to the mass of the particle

mediating the interaction.

In the case of semi-leptonic W+W- scattering, we wish to make a histogram of the invariant

mass of the W-boson pair, starting with the four-vectors of the lepton, the hadronic jet, and the

neutrino. The four-vectors of the lepton and the neutrino should add to the four-vector of the

leptonic W, and the four-vector of the hadronic jet should equal the four-vector of the hadronic W.

These two four-vectors can then be added to create the WW pair four-vector, from which the pair

invariant mass can be calculated. Unfortunately, neutrinos are weakly interacting and their energy

and momenta cannot be measured in any standard pixel/strip detector or calorimeter. Therefore,

it is necessary to first reconstruct the neutrino’s four-vector using the available information.

Fortunately, given the missing transverse energy for the event, it is possible to solve for

the z-component of the neutrino’s four-vector. The sum of the vectors for the neutrino and lepton

is the four-vector of the leptonic W:

Wµ = lµ + nµ (2.7)

Taking the magnitude of both sides:

(Wµ)2 = (lµ + nµ)2 (2.8)

WµWµ = lµlµ + 2lµnµ + nµnµ (2.9)

The magnitude of a particle’s energy-momentum four-vector is its invariant mass, so we can write:

M2
W = M2

l + 2(EnEl − plxp
n
x − plyp

n
y − plzp

n
z ) +M2

n (2.10)

where we have also used the definition of the energy-momentum four-vector to rewrite lµnµ in terms

of the total energies of the particles and their relativistic momenta. Using the relation between
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relativistic momentum and energy, and assuming the neutrino is massless, we get:

M2
W −M2

l

2
= El

√
|pnt |2 + (pnz )

2 − plxp
n
x − plyp

n
y − plzp

n
z (2.11)

where we have used the definition of transverse momentum, |pt|2 = p2x + p2y. This gives a quadratic

equation for pnz , the z-component of the neutrino’s relativistic momentum. Using a computer algebra

system, the solution can be found: [6]

pnz =
−plz(p

l
xE

miss
x + plyE

miss
y +

M2
W−M2

l

2 )± El

√
(plxE

miss
x + plyE

miss
y +

M2
W

−M2
l

2 )2 + (Emiss)2(−E2
l + (plz)

2)

E2
l − (plz)

2

(2.12)

The lepton is typically detected in the tracker, so plx, p
l
y and plz are known. Since the neutrino

is the only undetected final-state particle in the event, momentum conservation in the x-y plane

makes it possible to estimate its x and y momentum components - they must be such that the

total momentum in the x-y plane of all final-state particles adds to zero. Since the missing particle

is assumed to be massless, this missing x-y momentum vector is often called ”missing transverse

energy”: [7]

E⃗miss = −
∑

p⃗t (2.13)

Therefore, we have re-labeled pnt to E⃗miss in equation 2.12. Emiss has components

p⃗nt ≈ E⃗miss = (Emiss
x , Emiss

y ) = Emiss(cosϕm, sinϕm) (2.14)

where ϕm is the angle of the missing transverse energy vector E⃗miss in the x-y plane.

Equation 2.12 works for computing the neutrino pz when the terms under the square-root

add up to greater than zero. However, the discriminant could be negative, giving no solution for

pnz . This can be resolved by changing the magnitude Emiss such that the discriminant is zero,

while preserving the angle of the missing transverse energy vector in the x-y plane. This method

is technically incorrect, since we are violating momentum conservation in the x-y plane. However,

by just changing |Emiss| enough to make the discriminant zero, we are making the minimum error

possible while still making the equation possible to solve. The condition for making the discriminant
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zero is:

(Emissplxcosϕ
m + Emissplysinϕ

m +
M2

W −M2
l

2
)2 + (Emiss)2(−E2

l + (plz)
2) = 0 (2.15)

The solution for Emiss, which will be called E′, is:

E′ =
−2βα±

√
4β2α2 − 4β2(α2 + (plz)

2 − E2
l )

2(α2 + (plz)
2 − E2

l )
(2.16)

α = plx cosϕ
m + ply sinϕ

m (2.17)

β = M2
W −M2

l (2.18)

Once the value of E′ is known, it can be used as Emiss in equation 2.12 to find the neutrino pz, where

the discriminant is guaranteed to be zero. Another method for dealing with negative discriminants

in equation 2.12 that works better in practice is to fit the function

(E′
x, E

′
y) =

M2
W −M2

l

2[
√
(plt)

2 +M2
l − pltcos(ϕ

n − ϕl + α)]
(cos (ϕn + α), sin (ϕn + α)) (2.19)

so that (E′
x − Emiss

x )2 and (E′
y − Emiss

y )2 are minimum, by varying the parameter α. [12] This fit

gives a new missing transverse energy vector that makes the discriminant zero, while also staying

close to the original missing transverse energy components. The new missing transverse energy can

then be used in equation 2.12 to find the neutrino pz. This method allows both the direction and

magnitude of the missing transverse energy vector to vary, in contrast to equation 2.16 which only

varies the magnitude. The accuracy of the method in equation 2.19 compared to equation 2.16 is

shown in figure 2.1. This fit method gets the neutrino pz close to the true value more frequently

than the method in equation 2.16, so we will use it from now on for resolving negative discriminants

in equation 2.12.

Figure 2.2 shows the error when using equation 2.12 to solve for pz and equation 2.19 to

resolve negative discriminants. This is compared against equation 2.12 by itself, with no attempt to

resolve negative discriminants, in order to show that some additional neutrinos can be reconstructed

accurately even when the discriminant is negative. It should be noted, however, that the chosen

method also includes more bad neutrino reconstructions.
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Figure 2.1: The difference between the true neutrino pz and the corresponding pz estimated from

equation 2.12 with all discriminants set to zero by altering Emiss according to equations 2.16 and

2.19. The MET fitting method (equation 2.19) gives more good pz values than the quadratic MET

solution (equation 2.16).
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Figure 2.2: Difference between the true neutrino pz of parton-level WW scattering events and the

corresponding neutrino pz estimated from equation 2.12. The error with missing transverse energy

correction for negative discriminants is compared against the error with negative discriminant events

thrown out.
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2.3 Detector Simulation

The ATLAS pixel and strip detectors give measurements of the trajectories of charged

particles in the ATLAS detector, and the calorimeters give measurements of their energies. These

measurements are come with error that depends on the η and ϕ position of the particle, and its

energy and momentum. The Delphes 3.0 software package is used in this analysis to simulate

detector uncertainty.

Delphes takes exact particle trajectories as input, and propagates them through the inner

detector according to a magnetic field along the beam axis. [7] This causes neutral particles to move

in a straight line, while charged particles travel on a helical path. Each charged particle has some

probability of being reconstructed as a track, which means that the direction of its momentum vector

is recorded. The direction of the momentum vector is assumed to be perfectly accurate, but the

magnitude of the transverse momentum is ”smeared” according to Gaussian noise. Delphes assumes

that the calorimeters are divided into Eta-Phi cells, and that the Electromagnetic Calorimeter

(ECAL) is placed in front of the Hadronic Calorimeter (HCAL), such that each ECAL cell is in

front of a corresponding HCAL cell. Electrons and photons deposit all of their energy in the ECAL

by default, while heavier hadrons deposit a fraction of their energy in each calorimeter. Neutrons

and muons don’t deposit energy in the calorimeters.

2.3.1 Energy and Momentum Resolution

Delphes parameterizes the energy and momentum resolution differently for each type of

particle:

• Muons are not detected in the calorimeter, but the curvature of their tracks can be used to

measure the muon pt accurately, which means the four-vector can be reconstructed without

a measurement of the energy. Delphes randomly reconstructs the tracks of muons based on

an efficiency formula defined in the parameter card, which depends on the pt and η of the

muon. The muon momentum four-vector is then smeared according to a Gaussian function
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Table 2.1: Default Delphes parameters for equation 2.21.

η-condition E-condition a b c
0 < |η| < 2.5 0.1 < E < 25 0.015 0.0 0.0
0 < |η| < 2.5 E > 25 0.005 0.05 0.25
2.5 < |η| < 3.0 - 0.005 0.05 0.25
3.0 < |η| < 5.0 - 0.107 0.208 0.0

with variance depending on pt and η.

• Electrons are measured as tracks and their energy is deposited into the ECAL, which means

their reconstruction efficiency depends on both the efficiency of the ECAL and the tracker.

Delphes parameterizes this into a single efficiency function of η and E. The energy resolution

function also depends on both the ECAL and tracker resolution, and is also parameterized

according to η and E.

Gaussian smearing of a measurement means that the measurement is drawn from a Gaussian distri-

bution with the mean at the exact value:

P (X ′) = G(X0, σ) =
1√
2πσ

exp [− (X ′ −X0)
2

σ2
] (2.20)

whereX0 is the exact value and σ represents the resolution of the apparatus taking the measurement.

The default resolution functions for muon PT and electron energy are defined in the Delphes

parameter card. For electron energy, the function is:

σE =
√
E2a2 + Eb2 + c2 (2.21)

The parameters a and b depend on both η and pt and are shown in table 2.1.

For muons, Delphes uses a constant function for the momentum resolution:

σpt
= a (2.22)

where a is given in table 2.2.

Delphes’ default resolution functions are designed for the current ATLAS detector, but we

are interested in simulating the planned phase-II upgrade, in which the structure of the detector will
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Table 2.2: Default Delphes parameters for equation 2.22.

η-condition E-condition a
0 < |η| < 1.5 0.1 < pt < 1.0 0.03
0 < |η| < 1.5 1.0 < pt < 5.0 0.03
0 < |η| < 1.5 5 < pt < 100 0.04
0 < |η| < 1.5 pt > 100 0.07
1.5 < |η| < 2.5 0.1 < pt < 1.0 0.04
1.5 < |η| < 2.5 1.0 < pt < 5.0 0.04
1.5 < |η| < 2.5 5.0 < pt < 100.0 0.05
1.5 < |η| < 2.5 pt > 100 0.10

be different. New smearing functions have been published in [8] and [9], based on simulations of the

calorimeters and trackers in the proposed ATLAS detector. For electrons, the new function is:

σE =
√

0.32 + 0.12E + 0.012E2, |η| < 1.4 (2.23)

σE =
√
0.32 + 0.152E + 0.0152E2, |η| > 1.4 (2.24)

The new muon momentum resolution functions are:

σID = pt

√
a21 + a22p

2
t (2.25)

σMS = pt

√
(
b0
pt
)2 + b21 + b22p

2
t (2.26)

σCB =
σIDσMS√
σ2
ID + σ2

MS

(2.27)

The functions σID and σMS are the functions for the Inner Detector (ID) and Muon Spectrometer

(MS) respectively. The function σCB is a combination of those two functions, which behaves like

each function for the η and pt values where it is applicable. In order to correctly simulate the phase

II detectors, I replaced the default Delphes functions in the parameter card with these new functions.

To check that Delphes was smearing the energies and momenta correctly, I created a set of

parton-level events using MadGraph and then ran Delphes on them with the new parameter card.

To check the electron smearing function, I created a set of pp > Z > e+e− events, and for the muon

functions I created pp > Z > µ + µ− events. Then I compared the true electron energies from the

parton-level file with the energies of the corresponding electrons in the Delphes output file, to find
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the amount each electron’s energy had been smeared. I then created a profile plot of the average

difference from the true energy, as a function of the true energy. A profile plot (which is implemented

in ROOT in the TProfile class) is used for showing the variance in a set of measurements, when the

variance depends on the variable on the x-axis. In this case, we are dividing the electron energy axis

into bins, and for each bin plotting the average deviation in electron energy from the true energy

for the subset of electrons whose true energy falls into that bin. We can make a similar profile plot

for muons to show their variance from the true pt as a function of the true pt.

As a way of checking Delphes’ internal implementation of smearing, I also performed the

following procedure to generate simulated measurements smeared according to the new ATLAS

functions:

• For each electron at parton level, get its energy E and its η.

• Draw a value from a Gaussian distribution with mean E and σ determined by the ATLAS

smearing function with the correct parameters for the electron’s values of pt and η.

• Fill that value into a profile plot.

A similar procedure applies for generating simulated muon pt measurements. Figure 2.3

shows the profile plot of the muon pt deviation for Delphes and for the above procedure, with the

σMS resolution function, and figure 2.4 shows the same for σID. Delphes’ resolution agrees very well

with the direct smearing procedure, so I will claim that the smearing is being done correctly.

2.4 Event Selection

2.4.1 Tagging Jet Classifier

Since the WW scattering events we wish to observe are primarily characterized by two

far-forward (high-η) jets, it is necessary to identify these two jets before attempting to reconstruct

the WW pair mass. The main obstacle to distinguishing these tagging jets from other jets in an
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Figure 2.3: Profile plot of Muon smearing with the MS smearing function.
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set of Z > µ+ µ− events.
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Figure 2.5: Electron energy resolution with the smearing functions proposed in [8]

event is pileup. The LHC collides bunches of protons and anti-protons with each other, with each

bunch-crossing resulting in multiple proton-antiproton collisions. The expected number of collisions

is given by: [10]

< µ >=
Lσpp

NbunchfLHC
(2.28)

where σpp is the cross section of proton-proton interactions, L is the luminosity of the LHC, Nbunch

is the number of electrons per bunch, and fLHF is the frequency of the LHC - the number of bunches

passing a given point per second. The higher the luminosity of the accelerator, the more collisions

will occur each time the bunches cross. With many vertices in each bunch-crossing, it becomes

difficult to determine which vertex a detected particle originated from. Jets are particularly difficult

to associate with a vertex because they are actually groups of particles. Once tracks have been

clustered into jets (usually by the Anti-KT algorithm), a quantity called the Jet Vertex Fraction

(JVF) can be defined:

JV F =

∑
i pt(PVα, i)∑

j

∑
i pt(PVj , i)

(2.29)
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where j ranges over all primary vertices and i ranges over all particles whose tracks originate from

a particular primary vertex. The JVF is a measure of the fraction of the transverse momentum of

a jet that originated from primary vertex α. If the JVF is close to zero, most of the transverse

momentum in the jet comes from vertices other than α. If it’s close to one, most of the transverse

momentum did originate from that vertex. Therefore, the JVF is a measurement of the likelihood

that a jet came from a pileup vertex, rather than the primary vertex in the event. Usually the

primary vertex is determined by the tracks of the other particles, such as leptons.

In addition to the JVF, figure 2.6 shows several variables that have significantly differ-

ent distributions for tagging jets than for pileup jets. We would like to use all of these variables

simultaneously for each candidate jet to decide whether it is pileup or tagging.

One method of classifying jets would be to simply require the JVF to be above a certain

threshold - this is called a cut. One could also make cuts on other variables like jet pt, jet η, or jet

mass. The problem with this method is that it might be overly harsh in rejecting *all* jets that fail

any of the cuts. It would be better to consider all variables simultaneously when classifying each

jet. The best way to do this is through machine learning (ML) classification.

Using machine learning algorithms, it is possible to ”train” a classifier to sort a set of

samples (in this case, jets) into two or more categories. The most basic classifier would be a linear

function of the set of variables we are using for classification:

y = w1x1 + w2x2 + w3x3 + ... (2.30)

where xi are a set of variables, wi are the weights given to each of those variables, and y is the

response of the classifier for a particular sample. The response is a number between zero and one

that represents the category the sample has been classified into. This linear classifier could be trained

by using samples whose classification are known. This is called a ”training set”. Over this training

set, the weights could be chosen such that they minimize the quantity

∑
i

(yi − ytruthi )2 + |w|2 (2.31)
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Figure 2.6: Normalized distributions of jet |η|, pt, and JVF for a set of tagging jets and a set of

background jets. Variables whose distributions differ between the two categories of jets are useful

for classification.
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, where ytruthi is the true category of jet i and yi is the classifier response. The second term is the

norm of the weight vector - including this term helps prevent the weights from becoming arbitrarily

large and ”overfitting” to the training set.

Linear classifiers are effective for some problems, but there are more complicated classifiers

that use non-linear functions of the input variables, and these are often more effective. For identifying

the tagging jets, we will use a method called Boosted Decision Tree [11], which was found to be

effective for this problem in prior work by Niklas Garner [12]. However, most classifier algorithms

give very similar results - the most important step is choosing features that effectively separate the

two classification categories.

In order to train the tagging jet classifier, we need a set of known tagging jets and a set of

known pileup jets, over which the classifier training algorithm will optimize the parameters of the

BDT such that the training samples are classified correctly. We can obtain this training set from a

set of WW scattering events produced by VBFNLO/MadGraph/Delphes, by checking whether each

jet in the Delphes-level events corresponds to a jet in the parton-level file. If an event has two jets

in opposite η hemispheres that can be matched to parton-level quarks, those two jets are considered

tagging jets. All other jets are assumed to be pileup.

To train and test the BDT, I created a set of 1184 known tagging jets and 8134 known

pileup jets from 1000 WW scattering events. I then used TMVA to train a BDT on half of this

training set, and test the classification efficiency on the other half. The complete set of variables

used were:

• Jet |η|

• Jet pt

• Jet energy

• Jet mass

• Jet JVF
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Figure 2.7: The fraction of jets that are accepted as a function of the cutoff on the BDT response.

Since the accepting efficiency decreases much more rapidly for the pileup jets, one can choose a

cutoff that rejects most pileup jets while still accepting most tagging jets.

The efficiency (percentage of jets that are classified as tagging) over the test set is shown in figure 2.7.

In order to use the jet classifier once it has been trained, one must choose a cutoff for the classifier

response. Jets that score higher than the cutoff are considered tagging jets, and jets scoring lower

are considered pileup. Based on the efficiency functions in figure 2.7, one can choose the cutoff such

that effsignal = 1 − effbackground, which gives a reasonable cutoff in terms of maximizing signal

acceptance while minimizing background acceptance. For the jet BDT classifier, this value of the

cutoff was -0.144.

2.4.2 Event Classifier

Selecting events that have two opposite-hemisphere tagging jets (as determined by the

tagging jet classifier) eliminates many background events. However, we would like to eliminate even

more tt̄, W + 3Jets, and W + 4Jets events before calculating the invariant mass spectrum. This
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can be done with an additional classifier on the events as a whole. By identifying variables that are

significantly different between WW scattering events and the types of background events, a classifier

can be created that rejects more background than signal, thus increasing the signal-to-noise ratio.

For the event classifier, the following variables were used:

• Hadronic Jet |η|

• Hadronic Jet pt

• Hadronic Jet mass

• Missing transverse energy magnitude

• Tagging jet pair invariant mass

• Lepton |η|

• Lepton pt

Using sets of 100,000 WW scattering, tt̄, W + 3Jets, and W + 4Jets events processed by Pythia

and Delphes, I partitioned each of the events files in the following way:

• 0 - 999: Jet classifier training set (WW scattering only)

• 1000 - 9999: Event classifier training/testing set

• 10000 - 100000: Reconstruction

After training the jet classifier on the first 1,000 WW scattering events, I trained the event classifier

on the events from 1000 - 9999, including only events that had all the required components (lepton,

hadronic jet, and two tagging jets that pass the jet classifier). WW scattering events were the signal,

and tt̄, W + 3Jets, and W + 4Jets were the background. The performance of the event classifier is

shown in figure 2.8. After training the event classifier, I calculated invariant mass spectra for the

remaining 90,000 events, first filtering out any events that didn’t have the required components, or
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Figure 2.8: Efficiency of the event classifier for signal and background, as a function of the cutoff.

The event classifier is less effective at distinguishing WW scattering events from background than

the jet classifier is at distinguishing tagging jets from pileup, as seen from the fact that the signal

and background efficiency curves are close together. The event classifier has to reject a large number

of signal events in order to significantly reduce the background.
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Type Missing tag jets Other missing particle(s) Failed event classifier Bad reconstruction Good events
SM W+W− 9781 73160 1420 3169 2462
tt̄ 26486 57305 2822 1608 1779
W + 3Jets 24610 32668 28801 2099 1822
W + 4Jets 48299 33003 4653 2167 1878
W+W−,Λ = 500 GeV 18973 52811 3042 8121 7053
W+W−,Λ = 466 GeV 17594 53109 2870 8495 7932
W+W−,Λ = 433 GeV 15860 53149 2626 9355 9010
W+W−,Λ = 400 GeV 6240 73648 1080 4489 4543

Table 2.3: The number of events (out of 90,000 starting events) that make it through each step of

the event classification.

didn’t pass the event classifier. The numbers of events of each type that made it through the event

selection process are shown in table 2.3

2.5 Hypothesis Testing

Once invariant mass spectra have been obtained for standard model W+W- scattering,

the three background processes, and beyond-the-standard-model W+W− scattering, the next step

is to test whether the new physics theories could be ruled out by the phase-II LHC. One needs

a way of checking whether the difference in the observed WW scattering spectrum between the

Standard Model and the new theories is statistically significant, in the presence of the background

processes. To do this, I use a profile likelihood test. The profile likelihood test takes a distribution

and a set of data points, and checks whether those points are likely to have been drawn from that

distribution. It does this by dividing the data points into bins along the x-axis, and computing the

probability of each point, assuming a Poisson distribution with mean determined by the value of

the true distribution in each bin.[13] The likelihood of the observed dataset is the product of the

likelihoods in each bin:

P (ni, θ, µ) =
∏
i

(µsi + (1− µ)s0i + bni
i e−(µsi+(1−µ)s0i+bi)

ni!
(2.32)

where si is the expected number of events in bin i under the alternate model (in this case the

effective operator theories), s0i is the expected number under the null model (the Standard Model

in this case), ni is the observed number of events, µ is the parameter of interest of the model, and θ
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Figure 2.9: Histogram of the invariant mass of the W+W− boson pair in semi-leptonic WW scatter-

ing, with events filtered by the event classifier. The invariant mass of the boson pair is calculated by

solving for the four-vector of the neutrino using equation 2.12, with negative discriminants resolved

by equation 2.19.
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is the set of all other parameters of the model (such as fit parameters). The parameter µ varies the

model between the null and alternate hypotheses - if µ is zero, equation 2.32 reduces to the standard

model invariant mass spectrum with background. If µ is one, it reduces to the effective operator

mass spectrum with background. The profile likelihood is then defined as:

λ(ni) =
P (ni, θ̂, µ = 1)

P (ni, θ̂, µ = 0)
(2.33)

where θ̂ is the value of θ that maximizes P for each value of µ. The θ parameters are called nuissance

parameters because we are not attempting to set constraints on their values. According to Wilks’

theorem, the quantity t = −2lnλ(µ) is distributed according to a χ2 distribution with one degree of

freedom, which allows computation of the p-value of the observed measurements.

To use the profile likelihood test for testing the effective operator theories, I created fits of

all of the invariant mass spectra. I assumed that each spectrum could be fit with an exponential

function representing background events plus a Gaussian function representing the signal at higher

energies:

P (MWW ) = Ae−αMWW +Be
−(MWW −µ)2

2σ2 (2.34)

This fit function was chosen under the assumption that some background events would be accepted

by the event classifier, meaning that all invariant mass spectra would have both signal and back-

ground contributions. Figure 2.10 shows invariant mass spectra (after detector simulation and event

selection) of two of the effective operator theories with fits to 2.34. I then created the combined

model by adding the models of the spectra according to their cross-sections:

Pcombined(MWW , µ) = Wtt̄Ptt̄ +WW+3jPW+3j +WW+4jPW+4j +WW+W− [µPSM + (1− µ)Peff ]

(2.35)

where Wtt̄, WW+3j , WW+4j , and WW+W− are set such that they are proportional to the relative

cross-sections and add up to one. For tt̄, this is given by:

Wtt̄ =
σtt̄

σtt̄ + σW+3j + σW+4j + σW+W−
(2.36)
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Figure 2.10: The invariant mass spectra of the W boson pairs in WW scattering with effective

operator contributions (equation 1.7) for two different values of the scale Λ, with fits to equation

2.34. The effective operator contributions are more apparent in (b) because the scale of new physics

is lower, causing effects at lower energies.

The W+W− scattering weight is kept fixed regardless of whether it is governed by the effective

operator theories or the standard model (this is determined by the value of µ). The profile likelihood

test, as implemented in the RooStats package [22] creates a sample dataset according to the model

under the null hypothesis (µ = 0) and checks the value of the profile likelihood statistic (equation

2.33) with µ = 1 (the alternate hypothesis). The probability of that value of the profile likelihood can

then be estimated from Wilks’ theorem, giving the significance of the observed dataset in Gaussian

standard deviations. In this case, I set the size of the generated dataset according to:

N = LintσW+W− (2.37)

where Lint is the integrated luminosity of the LHC over the time period during which data is being

collected. I estimated the integrated luminosity at 10fb−1, which is probably a very low estimate.

Therefore, N is an estimate of the number of total leptonic WW scattering events that should be

observed during the operation of the LHC.

The significance of the deviation of the effective operator mass spectra from the Standard
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Figure 2.11: The profile likelihood significance of a simulated Standard Model WW scattering dataset

under the effective operator theory. The significance is slightly lower when tracker coverage for jets

is reduced to the region |η| < 4.0.
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Model is shown in figure 2.11, as a function of the scale of new physics Λ. If 3σ certainty is desired,

we might be able to rule out the effective operator theories for values of Λ below 470 GeV. Figure 2.11

shows these significance values for two different values of the tracker cutoff, |η| < 4.0 and |η| < 5.0.

For each cutoff value, I erased the JVF information for jets with |η| greater than the cutoff in all

training and experiment sets, and re-ran the analysis from scratch. Decreasing the tracker coverage

seems to have some effect on the significance for lower values of Λ.
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3 Conclusion

Using simulated WW scattering events under the Standard Model and effective operator

theories, I was able to create an estimate of which values of Λ, the effective operator scale, could be

ruled out by experiments at the high-luminosity phase-II LHC. Using machine learning classifiers to

detect the components of leptonic WW scattering events, I was able to filter out some events from

background processes like tt̄, W + 3j, and W + 4j and to reject tagging jets from pileup vertices. I

also attempted to simulate realistic detector performance at the phase-II ATLAS detector by using

Delphes to apply Gaussian ”smearing” to the particle energies and momenta, with the variance of

the smearing determined by predictions that have been made about how the phase-II detectors will

perform.
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